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ABSTRACT

This paper proposes a method to recognize fruits whose quality, including their ripeness, 
grades, brix values, and flesh characteristics, cannot be determined visually from 
their skin but from striking and flicking sounds. Four fruit types consisting of durians, 
watermelons, guavas, and pineapples were studied in this research. In recognition of fruit 
types, preprocessing removes the non-striking/non-flicking parts from the striking and 
flicking sounds. Then the sequences of frequency domain acoustic features containing 
13 Mel Frequency Cepstral Coefficients (MFCCs) and their 13 first- and 13 second-order 
derivatives were extracted from striking and flicking sounds. The sequences were used to 
create the Hidden Markov Models (HMMs). The HMM acoustic models, dictionary, and 
grammar were incorporated to recognize striking and flicking sounds. When testing the 
striking and flicking sounds obtained from the fruits used to create the training set but were 
collected at different times, the recognition accuracy using 1 through 5 strikes/flicks was 
98.48%, 98.91%, 99.13%, 98.91%, and 99.57%, respectively. For an unknown test set, 
of which the sounds obtained from the fruits that were not used to create the training set, 
the recognition accuracy using 1 through 5 strikes/flicks were 95.23%, 96.82%, 96.82%, 
97.05%, and 96.59%, respectively. The results also revealed that the proposed method 
could accurately distinguish the striking sounds of durians from the flicking sounds of 
watermelons, guavas, and pineapples. 
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INTRODUCTION

Fruits are vital for health which supply 
necessary nutrition supplements to life. 
When buying fruits, customers anticipate 
getting their desired fruit quality, including 
ripeness, sweetness, and characteristics of 
the flesh inside. However, when cutting or 
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peeling them, many customers were unsatisfied with the quality of the fruits they bought. 
For certain kinds of fruits, for example, durians, watermelons, guavas, and pineapples 
(Figure 1), the characteristics of fruit pulp and physiochemical properties were generally 
unknown by observing from their outer skins. 

Figure 1. Four types of fruits in the recognition: (a) durians; (b) watermelons; (c) guavas; and (d) pineapples
(a) (b) (c) (d)

Experienced fruit merchants usually determine the fruit quality by striking or flicking 
them and listening to the generated sounds. When flicking, the index or middle finger is 
released from the thumb against an object (Figure 2). Flicking can assess the quality of 
fruits, e.g., watermelon, guava, and pineapple. However, flickering a durian- the thorny 
king of fruit- is not practical as it can injure the finger. Striking or tapping the durian with 
a tapping stick and listening to the sounds to determine the ripeness of durians are shown 
in Figure 3. 

Figure 2. Flicking a guava Figure 3. Tapping a durian

Figure 4 shows the characteristics of the striking/flicking sounds of durians, 
watermelons, guavas, and pineapples. They are quite similar and difficult to be visually 
distinguished. They consist of non-striking/non-flicking parts and striking/flicking parts. 
Each striking/flicking sound normally begins with a non-striking/non-flicking part, followed 
by a striking/flicking part, and ends with a non-striking/non-flicking part. The flicking/
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striking parts have higher amplitude than the non-flicking/non-striking parts. The striking/
flicking parts, usually much shorter than the non-striking/non-flicking parts, contain more 
information about the types of fruits and fruit characteristics. In addition, the duration and 
the amplitude of flicking/striking signals derived from the same or different fruits fluctuate, 
resulting in difficulties in recognition. The pace of flicking/striking the fruits can affect 
the results, especially if the duration of non-flicking/non-striking parts is long. In order to 
overcome these differences, the preprocessing method of reducing the flickering parts based 
on the amplitude of the signals was proposed (Phoophuangpairoj, 2014a). The duration of 
striking/flicking parts depends on when the finger or the tapping stick hits the fruits. The 
hardness or impact of flicking and striking affects the amplitude of signals. 

Therefore, it is not practical to determine the quality of fruits from the amplitude but 
from the frequency-based features extracted from signals and models that can efficiently 
capture acoustic phenomena. It can be seen from how some merchants recognize short 
flicking and striking sounds, which have some frequency differences to predict the 
internal fruit flesh. Based on the results, using HMMs with frequency-based features 
could efficiently handle the different impacts of watermelon flicking and durian tapping 
(Phoophuangpairoj, 2014a; Phoophuangpairoj, 2014b). For guavas, repeatedly flicking the 
same area can affect the recognition results. The flicking should be applied to the different 
areas of the guavas to classify the freshness of the guavas.

There was research applying speech recognition technologies to recognize the 
quality of watermelons and guavas using flicking sounds (Phoophuangpairoj, 2014a; 
Phoophuangpairoj, 2013). For the recognition of firm flesh and flesh with cracks, the 
average watermelon quality recognition rates of 95.0%, 97.0%, 98.0%, 98.0%, and 98.0% 
were achieved by using 1 through 5 flicks, respectively. For guavas stored in a normal 
refrigerator, the average correct freshness recognition rates of 92.0%, 88.0%, and 94.0% 
were obtained from fresh, 3-day-kept, and 6-day-kept guavas, respectively. The striking 
sounds were also used to recognize ripe and unripe durians using a dictionary and grammar 
(Phoophuangpairoj, 2014b) and an N-gram language model (Phoophuangpairoj, 2014c). 

Figure 4. Striking and flicking sounds of fruits five times: (a) durian; (b) watermelon; (c) guava; and (d) pineapple

(a) (b)

(c) (d)
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The recognition system using MFCC-based features and HMMs efficiently recognized 
the quality of watermelons and durians. When using grammar, the durian ripeness 
recognition rates of 91.0%, 92.0%, 90.0%, 92.0%, and 92.0% were achieved using 1 through 
5 strikes, respectively. Using an N-gram language model, the durian ripeness recognition 
rates of 88.0%, 91.0%, 91.0%, 92.0%, 92.0%, and 90.0% were achieved using 1 through 
5 strikes, respectively. The flicking sounds were also studied to classify pineapples and 
their physicochemical properties. Even though predicting pineapple grades using flicking 
sounds cannot be done efficiently, the results showed that pineapples classified as grade 
1 and grade 3 differed significantly in terms of total soluble solid (TSS), pH value, and 
water content (Phoophuangpairoj & Srikun, 2014).

When recognizing some fruit types whose internal characteristics cannot be visually 
determined from their skin, flicking and striking sounds can also be applied. Studying the 
feasibility of recognizing the types of fruits from the flicking and striking sounds without 
using image processing is beneficial. The image processing requires another different 
source of data, while the proposed method merely utilizes a source of data, which is more 
efficient. Hence, this work proposed a novel method to recognize the fruit types without 
using image processing but did not stress the quality of fruits because this issue had already 
been researched.

LITERATURE SURVEY

Automation in food processing plays a crucial role in increasing the productivity, quality, 
and profitable growth of countries. Fruit grading is a process for producers which affects 
fruit quality evaluation and export markets (Raja et al., 2018). Automatic fruit classification 
is an interesting issue in the retailing and fruit-growing industry because it can help 
farmers and supermarkets identify the status of fruits from stock or containers (Shahi et 
al., 2022). Computer vision and machine learning methods have been applied for fruit 
detection, ripeness, and categorization in the past decade (Fan et al., 2020; Hossain et 
al., 2018). The problem of classifying fruits and vegetables in computer vision remains 
a challenge because some fruits look alike and have similar colors, shapes, and textures. 
CNNs (Convolutional Neural Networks) and transfer learning have obtained impressive 
results in image classification (Albarrak et al., 2022). Based on the previous work, CNN 
recognized 26 categories of fruits and vegetable images (Zeng, 2017) and orange grades 
(Asriny et al., 2020). A system has to extract image features and use them as a source to 
recognize the fruits to recognize the fruit quality from a video. Meanwhile, the system has 
to use striking or flicking sounds as the other source to recognize their qualities. Such a 
system requires two different sources, and this may not be as practical, resulting in creating 
a more complex heterogeneous system when compared to the system using only one source 
of flicking or striking sounds.
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The success of MFCC acoustic features combined with their cost-effective and robust 
computation turned them into a standard choice in speech recognition applications. In 
speech recognition systems such as an Arabic speech recognition system, 39 MFCC-based 
acoustic features were extracted by partitioning the speech signals into frames (Elharati 
et al., 2020). HMM is a model used to represent the acoustic phenomenon and acoustic 
changes according to time. HMMs provide a highly reliable method of recognizing spoken 
signals (Chavan & Sable, 2013; Naithani et al., 2018; Najkar et al., 2010). HMMs were 
also applied to recognize inhaling and exhaling signals (Phoophuangpairoj, 2020) and 
sleep spindles (Stevner et al., 2019). For HMM, Gaussian Mixture Models (GMMs), 
which are the components within each HMM state, were primarily utilized to compute the 
probabilistic distribution of each phone or phoneme (or any speech signal atom), and the 
fusion of GMMs-HMMs has led to many successful automatic speech recognition (ASR) 
applications (Kiranyaz et al., 2021). Phonemes or syllables were combined into words 
and sentences using a dictionary and language model. The main reasons for this success 
are this model’s analytic ability in the speech phenomenon and its accuracy in practical 
speech recognition systems (Najkar et al., 2010). 

Viterbi is an algorithm that searches HMM states to find the most probable phone, 
phoneme, word, and sentence from the acoustic models of phones or phonemes connected 
based on a dictionary and grammar. Viterbi algorithm was applied to recognize or search 
the possible phones in a speech recognition system (Hatala & Puturuhu, 2019). 

MATERIALS AND METHODS

Data

Data were collected from four different types of fruits: 100 durians, 100 watermelons, 
150 guavas, and 110 pineapples. The striking/flicking sounds were recorded at 11,025 
Hz. The data were collected from fruits of different quality, grades, and ripeness. 
Nonetheless, the work studied the differentiation of the fruit types. Striking sounds were 
derived from 100 durians struck five times each to train the HMM acoustic models. The 
flicking sounds were obtained from 100 watermelons and 150 guavas, all flicked five 
times each, while the pineapple flicking sounds were obtained from 110 pineapples, ten 
times each. For testing, untrained and unknown sets were used. The untrained set was 
collected from the same set of fruits used in the training but at different times, whereas 
the unknown set was collected from different fruits not included in the training. The 
untrained set consisted of 1 through 5 striking/flicking sounds, each collected from 100 
durians, 100 watermelons, 150 guavas, and 110 pineapples. The unknown set consisted of 
1 through 5 striking/flicking sounds, each collected from 100 durians, 100 watermelons, 
150 guavas, and 90 pineapples. 
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Preprocessing

As a rule, the striking/flicking parts contain information about fruit quality and types. 
Preprocessing was performed to reduce the non-striking/non-flicking parts. The digitized 
signals contain positive, negative, and zero values. As a result, it is easier to set a removing 
threshold by computing their absolute values. Additionally, a clipping or cut-off threshold 
was applied to handle the high difference in the signal amplitude. The threshold (Th) to 
reduce non-flicking/striking parts was computed from all frames using Equation 1: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓𝑑𝑑𝑑𝑑

1000
×  𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑑𝑑𝑠𝑠_𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓    (1)

where: framesize is the number of points or values in each frame; frame_duration is the frame 
duration or size in milliseconds; sampling_rate is the recording sampling rate (11,025 Hz).

The frame duration (frame_duration) was set to 2 milliseconds. The number of samples 
(num_smp_file) was obtained from each wav file. Then the nFrame, which is the number 
of frames in a striking/flicking file, was computed using Equation 2.

𝑑𝑑𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  
𝑑𝑑𝑑𝑑𝑓𝑓_𝑓𝑓𝑓𝑓𝑠𝑠_𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

       (2)

Clip() was a function used to clip the signals. If any value of ǀsiǀ was higher than a 
clipping threshold (Thclip) (e.g., 10,000), the value was set to the threshold (Equations 3-5).

𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑑𝑑 = � 𝑐𝑐𝑠𝑠𝑓𝑓𝑠𝑠(|𝑓𝑓𝑓𝑓 |),     1≤n≤𝑑𝑑𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑑𝑑×𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑓𝑓=(𝑑𝑑−1)×𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +1

 

𝐴𝐴𝐴𝐴𝑠𝑠𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓 =
∑ 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓 𝑓𝑓

nFrame
𝑓𝑓=1

𝑑𝑑𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 

𝑇𝑇ℎ = 𝐶𝐶 ∗ 𝐴𝐴𝐴𝐴𝑠𝑠𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓  

 

  (3)𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑑𝑑 = � 𝑐𝑐𝑠𝑠𝑓𝑓𝑠𝑠(|𝑓𝑓𝑓𝑓 |),     1≤n≤𝑑𝑑𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑑𝑑×𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑓𝑓=(𝑑𝑑−1)×𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +1

 

𝐴𝐴𝐴𝐴𝑠𝑠𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓 =
∑ 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓 𝑓𝑓

nFrame
𝑓𝑓=1

𝑑𝑑𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 

𝑇𝑇ℎ = 𝐶𝐶 ∗ 𝐴𝐴𝐴𝐴𝑠𝑠𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓  

 

     (4)

𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑑𝑑 = � 𝑐𝑐𝑠𝑠𝑓𝑓𝑠𝑠(|𝑓𝑓𝑓𝑓 |),     1≤n≤𝑑𝑑𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑑𝑑×𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑓𝑓=(𝑑𝑑−1)×𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +1

 

𝐴𝐴𝐴𝐴𝑠𝑠𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓 =
∑ 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓 𝑓𝑓

nFrame
𝑓𝑓=1

𝑑𝑑𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 

𝑇𝑇ℎ = 𝐶𝐶 ∗ 𝐴𝐴𝐴𝐴𝑠𝑠𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓  

 

       (5)

where: Frameabsn is the sum of clipped absolute values computed from the nth frame; 
AVGFrameabs is the average of Frameabsn computed from all frames; C is a constant (e.g., 
3); It is the threshold to reduce non-striking/non-flicking parts.

Then the following method was applied to remove non-striking/non-flicking parts 
(frames) from the signals.

for(n=1;n<=nFrame;n++)
KeepFrame[n] = 0
if((vFrameabsn >= Th) OR (n equals to 1, 2, nFrame-1 or nFrame)) 

KeepFrame[n] = 1; // The nth frame is flagged to be kept.
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The method scanned all frames. If it was the first or last two frames or the sum of 
clipped absolute values computed from the nth frame (Frameabsn) was greater than or equal 
to the threshold to reduce non-striking/non-flicking parts, the KeepFrame[n] was set to 1. 
When the KeepFrame[n] was equal to 1, the nth frame was kept. When the KeepFrame[n] 
was equal to 0, the nth frame was removed. Removing all non-striking/non-flicking parts 
without losing some precious short striking/flicking parts is difficult. According to the 
algorithm below, some parts before and after each striking/flicking were kept to ensure that 
the precious data in striking/flicking parts were not removed and to obtain longer signals 
for recognizing HMMs, which contained a higher number of states. The algorithm kept 
the frames before and after each striking/flicking part, as described below.   

for(n=2;n<nFrame;n=n+1)
if(KeepFrame[n] equals to 1 AND KeepFrame[n-1] equals to 0)  

KeepFrame[n-1] = 1;

for(n=nFrame-1;n>1;n=n-1)
if(KeepFrame[n] equals to 1 AND KeepFrame[n+1] equals to 0) 

KeepFrame[n+1] = 1;

The data in the nth frame of which KeepFrame[n] equals 1 were written in the 
preprocessed file. Thereafter, the Hidden Markov Model Toolkit (HTK) (http://htk.eng.
cam.ac.uk/) was used to extract acoustic features from the preprocessed signals, train HMM 
acoustic models and detect the types of fruits. As for the evaluation, HResult, a tool in 
HTK, was used to find the fruit type recognition accuracy. 

Extracting Acoustic Features 

The time-domain or the visual characteristics of the durian striking, watermelon, guava, 
and pineapple flicking were similar. Therefore, the frequency-domain features of the signals 
were computed and used instead. Acoustic features consisting of 13 MFCCs and their 13 
first- and 13 second-order derivatives were extracted from each particular time or window. 
The feature extraction used a window size of 4 milliseconds and a window shift rate of 1 
millisecond. Left-to-right HMMs were used to model striking/flicking parts of each fruit 
type and a shared model of non-striking/non-flicking parts.   

Creating Acoustic Models

The sounds were transcribed without providing the position of each part. For each fruit 
type, the non-flicking and non-striking parts which remained after the preprocessing were 
represented using sil (silence). Each striking/flicking part was represented based on the 
types of fruits, drstrike for each striking signal of a durian, wmflick, gvflick, and paflick for 
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each flicking signal of watermelon, guava, and pineapple, respectively. The transcriptions 
of each 5-striking/5-flicking signal used in the training are shown in Table 1.

The transcriptions without the positions of striking/flicking parts were used in the 
training. HTK tried to find acoustic features of striking/flicking and non-striking/non-
flicking parts to create the acoustic models according to the transcriptions. In training, the 
number of HMM states varied from 4 to 7, and the number of Gaussian mixtures in each 
state was from 2 to 6.

Table 1 
Transcriptions of each 5-striking/5-flicking signal used in the training

Types of fruits Transcriptions for each 5-striking/5-flicking sound 
durian sil drstrike sil drstrike sil drstrike sil drstrike sil drstrike sil 
watermelon sil wmflick sil wmflick sil wmflick sil wmflick sil wmflick sil
guava sil gvflick sil gvflick sil gvflick sil gvflick sil gvflick sil
pineapple sil paflick sil paflick sil paflick sil paflick sil paflick sil

Creating a Dictionary to Recognize Fruit Types

Words representing 1 through 5 strikes/flicks were defined according to the characteristics 
of the striking and flicking sounds. For example, the one-flick word consists of a non-
flicking/non-striking model followed by each fruit type’s striking or flicking model and 
the sil model. In the Thai language, words can be pronounced in different ways. The words 
in the dictionary consisting of durian, watermelon, guava, and pineapple were created 
from different numbers of phones. The words in the dictionary to represent the sounds of 
1 through 5 strikes/flicks are shown below.

durian [durian]  sil drstrike sil
watermelon [watermelon]  sil wmflick sil
guava [guava]  sil gvflick sil
pineapple [pineapple]  sil paflick sil 
durian [durian]  sil drstrike sil drstrike sil
watermelon [watermelon]  sil wmflick sil wmflick sil 
guava [guava]  sil gvflick sil gvflick sil
pineapple [pineapple]  sil paflick sil paflick sil
durian [durian]  sil drstrike sil drstrike sil drstrike sil
watermelon [watermelon]  sil wmflick sil wmflick sil wmflick sil
guava [guava]  sil gvflick sil gvflick sil gvflick sil
pineapple [pineapple]  sil paflick sil paflick sil paflick sil
durian [durian]  sil drstrike sil drstrike sil drstrike sil drstrike sil
watermelon [watermelon]  sil wmflick sil wmflick sil wmflick sil wmflick sil
guava [guava]  sil gvflick sil gvflick sil gvflick sil gvflick sil
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pineapple [pineapple]  sil paflick sil paflick sil paflick sil paflick sil
durian [durian]  sil drstrike sil drstrike sil drstrike sil drstrike sil drstrike sil
watermelon [watermelon]  sil wmflick sil wmflick sil wmflick sil wmflick sil wmflick sil 
guava [guava]  sil gvflick sil gvflick sil gvflick sil gvflick sil gvflick sil
pineapple [pineapple]  sil paflick sil paflick sil paflick sil paflick sil paflick sil

Creating Grammar to Recognize Fruit Types

Grammar was applied to constrain the recognition results. The following grammar was 
created to recognize the fruit types.

$fruittype = durian | watermelon | guava | pineapple;                           
($fruittype)   

The ǀ means “or” while the () means no repetition. The first line of recognition grammar 
states that $fruittype can be durian, watermelon, guava, or pineapple, while the second line 
states that only the $fruittype without repetition can be derived.  

Recognizing Types of Fruits

The acoustic models, dictionary, and grammar were integrated to recognize the extracted 
acoustic features. The dictionary and grammar make the recognition more flexible and 
easy to handle the arbitrary numbers of strikes and flicks. The Viterbi algorithm decided 
which hypotheses or word-connected paths comprising phones were most likely to be the 
correct textual interpretation of the signals. 

RESULTS

To investigate the results, the number of strikes/flicks, the number of HMM states, and the 
number of Gaussian mixtures per state were varied. Table 2 shows the accuracy obtained 
from the untrained set. The results reported that of N testing times in which each time used 
F strikes or flicks, H times were recognized correctly. There were S substitution errors. 
When using 1 strike/flick, the accuracy of 98.48% was obtained by using 6 states and 
5 Gaussian mixtures per state (6S5M). For 2 through 5 strikes/flicks, 98.91%, 99.13%, 
98.91%, and 99.57% accuracy rates were obtained using 6 states and 4 Gaussian mixtures 
per state (6S4M), respectively. However, when using one strike or flick with HMMs 
containing 7 states, there were six striking/flicking sounds that the system was not provided 
the recognition results because the number of the feature vectors extracted from very short 
signals was not adequate to be recognized using the HMMs. 

Table 3 shows the fruit type recognition accuracy obtained from the unknown set.  
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Table 2 
Accuracy of fruit type recognition obtained from the untrained set based on the number of strikes/flicks, states, 
and Gaussian mixtures

Number of strike(s)/flick(s)
(T)

Number 
of states

Number of 
Gaussian mixtures

Accuracy
(%) H S N

1 4 2 93.48 430 30 460
4 3 93.70 431 29 460
4 4 93.04 428 32 460
4 5 93.70 431 29 460
4 6 96.74 445 15 460
5 2 95.65 440 20 460
5 3 95.65 440 20 460
5 4 95.00 437 23 460
5 5 95.87 441 19 460
5 6 96.09 442 18 460
6 2 95.87 441 19 460
6 3 97.39 448 12 460
6 4 98.04 451 9 460
6 5 98.48 453 7 460
6 6 98.26 452 8 460
7 2 94.93 431 23 460
7 3 96.04 436 18 454
7 4 96.70 439 15 454
7 5 97.14 441 13 454
7 6 97.58 443 11 454

2 4 2 94.13 433 27 460
4 3 95.43 439 21 460
4 4 95.22 438 22 460
4 5 95.43 439 21 460
4 6 96.52 444 16 460
5 2 95.87 441 19 460
5 3 96.74 445 15 460
5 4 95.87 441 19 460
5 5 95.43 439 21 460
5 6 97.17 447 13 460
6 2 98.04 451 9 460
6 3 98.70 454 6 460
6 4 98.91 455 5 460
6 5 98.70 454 6 460
6 6 98.26 452 8 460
7 2 96.30 443 17 460
7 3 98.04 451 9 460
7 4 98.04 451 9 460
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Number of strike(s)/flick(s)
(T)

Number 
of states

Number of 
Gaussian mixtures

Accuracy
(%) H S N

7 5 97.61 449 11 460
7 6 98.04 451 9 460

3 4 2 93.48 430 30 460
4 3 94.35 434 26 460
4 4 95.22 438 22 460
4 5 95.22 438 22 460
4 6 96.96 446 14 460
5 2 96.74 445 15 460
5 3 96.74 445 15 460
5 4 96.09 442 18 460
5 5 95.87 441 19 460
5 6 97.39 448 12 460
6 2 97.83 450 10 460
6 3 98.91 455 5 460
6 4 99.13 456 4 460
6 5 98.70 454 6 460
6 6 98.70 454 6 460
7 2 97.17 447 13 460
7 3 99.13 456 4 460
7 4 98.91 455 5 460
7 5 98.70 454 6 460
7 6 99.13 456 4 460

4 4 2 94.78 436 24 460
4 3 94.57 435 25 460
4 4 94.78 436 24 460
4 5 95.22 438 22 460
4 6 96.74 445 15 460
5 2 96.52 444 16 460
5 3 97.17 447 13 460
5 4 95.43 439 21 460
5 5 96.30 443 17 460
5 6 97.83 450 10 460
6 2 97.83 450 10 460
6 3 98.70 454 6 460
6 4 98.91 455 5 460
6 5 98.48 453 7 460
6 6 98.70 454 6 460
7 2 97.61 449 11 460
7 3 98.26 452 8 460

Table 2 (continue)
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Number of strike(s)/flick(s)
(T)

Number 
of states

Number of 
Gaussian mixtures

Accuracy
(%) H S N

7 4 98.48 453 7 460
7 5 98.48 453 7 460
7 6 98.70 454 6 460

5 4 2 94.35 434 26 460
4 3 95.00 437 23 460
4 4 95.00 437 23 460
4 5 95.43 439 21 460
4 6 96.52 444 16 460
5 2 97.17 447 13 460
5 3 97.39 448 12 460
5 4 96.30 443 17 460
5 5 96.52 444 16 460
5 6 98.26 452 8 460
6 2 98.04 451 9 460
6 3 98.91 455 5 460
6 4 99.57 458 2 460
6 5 98.70 454 6 460
6 6 98.70 454 6 460
7 2 97.39 448 12 460
7 3 98.91 455 5 460
7 4 99.13 456 4 460
7 5 98.70 454 6 460
7 6 99.13 456 4 460

Table 2 (continue)

Table 3 
Accuracy of fruit type recognition obtained from the unknown set based on the number of strikes/flicks, states, 
and Gaussian mixtures

Number of strike(s)/flick(s)
(T)

Number 
of states

Number of 
Gaussian mixtures

Accuracy
(%) H S N

1 4 2 92.50 407 33 440
4 3 92.27 406 34 440
4 4 92.73 408 32 440
4 5 92.73 408 32 440
4 6 93.41 411 29 440
5 2 92.73 408 32 440
5 3 92.73 408 32 440
5 4 94.09 414 26 440
5 5 95.23 419 21 440
5 6 93.86 413 27 440
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Number of strike(s)/flick(s)
(T)

Number 
of states

Number of 
Gaussian mixtures

Accuracy
(%) H S N

6 2 94.55 416 24 440
6 3 94.09 414 26 440
6 4 94.55 416 24 440
6 5 95.23 419 21 440
6 6 95.00 418 22 440
7 2 93.74 404 27 431
7 3 94.66 408 23 431
7 4 94.20 406 25 431
7 5 93.27 402 29 431
7 6 93.50 403 28 431

2 4 2 92.27 406 34 431
4 3 94.55 416 24 440
4 4 94.55 416 24 440
4 5 94.32 415 25 440
4 6 94.77 417 23 440
5 2 94.32 415 25 440
5 3 95.23 419 21 440
5 4 94.55 416 24 440
5 5 95.68 421 19 440
5 6 95.45 420 20 440
6 2 95.23 419 21 440
6 3 96.36 424 16 440
6 4 95.91 422 18 440
6 5 96.82 426 14 440
6 6 96.36 424 16 440
7 2 94.32 415 25 440
7 3 94.77 417 23 440
7 4 95.45 420 20 440
7 5 95.68 19 19 440
7 6 95.91 422 18 440

3 4 2 92.05 405 35 440
4 3 93.64 412 28 440
4 4 93.64 412 28 440
4 5 94.09 414 26 440
4 6 94.77 417 23 440
5 2 94.09 414 26 440
5 3 95.23 419 21 440
5 4 95.23 419 21 440
5 5 94.77 417 23 440

Table 3 (continue)
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Table 3 (continue)

Number of strike(s)/flick(s)
(T)

Number 
of states

Number of 
Gaussian mixtures

Accuracy
(%) H S N

5 6 95.68 421 19 440
6 2 95.23 419 21 440
6 3 97.05 427 13 440
6 4 96.82 426 14 440
6 5 96.82 426 14 440
6 6 96.59 425 15 440
7 2 94.55 416 24 440
7 3 95.00 418 22 440
7 4 95.23 419 21 440
7 5 96.14 423 17 440
7 6 96.59 425 15 440

4 4 2 92.73 408 32 440
4 3 93.18 410 30 440
4 4 94.09 414 26 440
4 5 94.77 417 23 440
4 6 94.55 416 24 440
5 2 94.32 415 25 440
5 3 95.00 418 22 440
5 4 95.23 419 21 440
5 5 95.45 420 20 440
5 6 94.55 416 24 440
6 2 95.00 418 22 440
6 3 96.14 423 17 440
6 4 95.91 422 18 440
6 5 97.05 427 13 440
6 6 96.36 424 16 440
7 2 95.00 418 22 440
7 3 95.00 418 22 440
7 4 96.14 423 17 440
7 5 95.68 421 19 440
7 6 96.14 423 17 440

5 4 2 92.27 406 34 440
4 3 93.41 411 29 440
4 4 93.64 412 28 440
4 5 95.00 418 22 440
4 6 95.00 418 22 440
5 2 94.09 414 26 440
5 3 94.77 417 23 440
5 4 95.23 419 21 440
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Table 3 (continue)

Number of strike(s)/flick(s)
(T)

Number 
of states

Number of 
Gaussian mixtures

Accuracy
(%) H S N

5 5 95.00 418 22 440
5 6 95.00 418 22 440
6 2 94.55 416 24 440
6 3 96.14 423 17 440
6 4 96.14 423 17 440
6 5 96.14 423 17 440
6 6 95.91 422 18 440
7 2 95.45 420 20 440
7 3 95.91 422 18 440
7 4 96.59 425 15 440
7 5 96.59 425 15 440
7 6 96.36 424 16 440

When using 1 through 4 strikes/flicks, the highest accuracy of 95.23%, 96.82%, 
96.82%, and 97.05% were respectively obtained by using 6 states and 5 Gaussian mixtures 
per state (6S5M). For 5 strikes/flicks, the highest accuracy of 96.59% was yielded when 
using 7 states and 5 Gaussian mixtures per state (7S5M). However, when using one strike 
or flick with HMMs containing 7 states, there were nine striking/flicking sounds that the 
system was not provided the recognition results because the number of the feature vectors 
extracted from very short signals was not adequate to be recognized using the HMMs. Next, 
the results were further investigated, and the confusion matrix derived from recognizing 
the untrained set was shown in Table 4.

For the untrained set, the highest accuracy was derived when using 5 strikes/flicks. The 
results showed high watermelon, guava, and durian recognition rates. The errors occurred 
when recognizing pineapple flicking sounds. The errors occurred when recognizing 
pineapple flicking sounds. There were 1.89% pineapples incorrectly recognized as 
watermelons. 

Table 5 shows the confusion matrix of fruit-type recognition obtained from the 
unknown set. 

The results revealed that although the striking and flicking sounds look similar, 
the proposed method could correctly distinguish durian striking sounds from those of 
watermelons, guavas, and pineapples. Although there were some errors when recognizing 
the flicking sounds of the different types of fruits, the overall accuracy was higher than 
90%. When using 4 flicks, the highest recognition accuracy rates of 91%, 99.33%, 
97.27%, and 100% were achieved for watermelons, guavas, pineapples, and durians, 
respectively. 
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Table 4 
Confusion matrix (untrained set)

Number of 
strike(s)/flick(s)

Actual type of 
fruit

Recognized as
Durian Watermelon Guava Pineapple

1 strike/flick 
(6S5M)

Durian 100%
(100)

0%
(0)

0%
(0)

0%
(0)

Watermelon 0%
(0)

98%
(98)

0%
(0)

2%
(2)

Guava 0%
(0)

0.67%
(1)

99.33%
(149)

0%
(0)

Pineapple 0%
(0)

3.64%
(4)

0%
(0)

96.36%
(106)

2 strikes/flicks
(6S4M)

Durian 100%
(100)

0%
(0)

0%
(0)

0%
(0)

Watermelon 0%
(0)

98%
(98)

0%
(0)

2%
(2)

Guava 0%
(0)

0%
(0)

98.67%
(148)

1.33%
(2)

Pineapple 0%
(0)

0.91%
(1)

0%
(0)

99.09%
(109)

3 strikes/flicks
(6S4M)

Durian 100%
(100)

0%
(0)

0%
(0)

0%
(0)

Watermelon 0%
(0)

99%
(99)

0%
(0)

1%
(1)

Guava 0%
(0)

0%
(0)

98.67%
(148)

1.33%
(2)

Pineapple 0%
(0)

0.91%
(1)

0%
(0)

99.09%
(109)

4 strikes/flicks
(6S4M)

Durian 100%
(100)

0%
(0)

0%
(0)

0%
(0)

Watermelon 0%
(0)

99%
(99)

0%
(0)

1%
(1)

Guava 0%
(0)

0%
(0)

100%
(150)

0%
(0)

Pineapple 0%
(0)

3.64%
(4)

0%
(0)

96.36%
(106)

5 strikes/flicks
(6S4M)

Durian 100%
(100)

0%
(0)

0%
(0)

0%
(0)

Watermelon 0%
(0)

100%
(100)

0%
(0)

0%
(0)

Guava 0%
(0)

0%
(0)

100%
(150)

0%
(0)

Pineapple 0%
(0)

1.89%
(2)

0%
(0)

98.18%
(108)
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Table 5 
Confusion matrix (unknown set)

Number of 
strike(s)/flick(s)

Actual type of 
fruit

Recognized as
Durian Watermelon Guava Pineapple

1 strike/flick
(6S5M)

Durian 100%
(100)

0%
(0)

0%
(0)

0%
(0)

Watermelon 0%
(0)

93%
(93)

0%
(0)

7%
(7)

Guava 0%
(0)

0%
(0)

98.67%
(148)

1.33%
(2)

Pineapple 0%
(0)

7.27%
(8)

3.64%
(4)

89.10%
(98)

2 strikes/flicks
(6S5M)

Durian 100%
(100)

0%
(0)

0%
(0)

0%
(0)

Watermelon 0%
(0)

94%
(94)

0%
(0)

96%
(6)

Guava 0%
(0)

0%
(0)

98.67%
(148)

1.33%
(2)

Pineapple 0%
(0)

3.64%
(4)

1.82%
(2)

94.55%
(104)

3 strikes/flicks
(6S5M)

Durian 100%
(100)

0%
(0)

0%
(0)

0%
(0)

Watermelon 0%
(0)

93%
(93)

0%
(0)

7%
(7)

Guava 0%
(0)

0%
(0)

98.67%
(148)

1.33%
(2)

Pineapple 0%
(0)

2%
(3)

1.33%
(2)

96.67%
(145)

4 strikes/flicks
(6S5M)

Durian 100%
(100)

0%
(0)

0%
(0)

0%
(0)

Watermelon 0%
(0)

91%
(91)

0%
(0)

99%
(9)

Guava 0%
(0)

0%
(0)

99.33%
(149)

0.67%
(1)

Pineapple 0%
(0)

0.91
(1)

1.82%
(2)

97.27%
(107)

5 strikes/flicks
(6S5M)

Durian 100%
(100)

0%
(0)

0%
(0)

0%
(0)

Watermelon 0%
(0)

90%
(90)

0%
(0)

10%
(10)

Guava 0%
(0)

0%
(0)

99.33%
(149)

0.67%
(1)

Pineapple 0%
(0)

1.82%
(2)

1.82%
(2)

96.36%
(106)
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DISCUSSION

Even though the types of fruits can be manually provided for recognizing the fruit quality, 
it will be better if we can simultaneously recognize the types of fruits and their quality 
from the striking and flicking signals. The duration of the flicking and striking sounds of 
the fruits is very short, and the sounds resemble. Therefore, the method to recognize the 
different types of fruits should be studied. HMMs can model striking and flicking signals 
for recognizing the quality of fruits and fruit types. Nowadays, the prices of fruits are 
much higher when compared with those in the past decade, which makes non-destructive 
fruit grading more important. According to the derived results and previous studies 
(Phoophuangpairoj, 2014a, 2014b), it revealed some possibility of creating an application 
that can recognize the quality of durians and watermelons from the striking ad flicking 
sounds without recognizing the types of fruits from images or manually giving the type 
of fruits in advance. 

When using HMMs, if the number of feature vectors extracted from the signals is 
insufficient for HMM states, the HMM decoder will not give the result. Therefore, it is 
suggested that the large number of HMM states is inappropriate for recognizing short 
signals such as 1 striking or flicking sound. 

In the future, CNN, which has been used in several computer vision applications 
and will be more widely used in processing sequential data, including natural language 
processing and speech recognition (Kiranyaz et al., 2021), long short-term memory 
networks (LSTM), and deep learning techniques should be explored along with frequency 
domain features such as MFCCs for the recognition of the fruits from striking and flicking 
sounds.

CONCLUSION

This paper proposes using preprocessing, acoustic models, a dictionary, and grammar 
to recognize the fruit types from flicking/striking sounds. The dictionary and grammar 
provide flexibility to design the recognition system and can be used to recognize arbitrary 
duration of flicking/striking sounds. The parameters to extract acoustic features, including 
the window size, have to be adjusted to fit the problem. The preprocessing acoustic 
models, dictionaries, and grammar have to be designed based on the characteristic of the 
striking and flicking sounds. The results when using the different number of flicking and 
striking sounds, number of states, and number of Gaussian mixtures were compared. The 
method could correctly differentiate durian striking sounds from watermelon, guava, and 
pineapple flicking sounds. Averagely, more than 95% of recognition accuracy was obtained 
from recognizing striking and flicking sounds. The findings shed light on the feasibility 
of recognizing the durian ripeness of fruits and watermelon flesh from the flicking and 
striking sounds without image processing. 
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